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1 Introduction

Attitude maneuvers of a spacecraft generate changes in the spacecraft rotational state [1], [2]. ideally,
attitude maneuvers take place without changing the center of mass (CM) velocity, Nowever, in the
CMC of the Cassini  spacecraft (which is scheduled for launch to Saturn in October of 1997), thrusters
will be used fc)r some attitude maneuvers and they are mounted so as to generate changes in the
CM velocity. The resultant Chf velocity changes will significantly alter the spacecraft trajectory.
Navigation has to moclel  these changes in order to predict what trajectory the spacecraft will actually
follow. For this reason, ROTRAN, a computer sirnulatior,  package (presented at this conference last
year [1]) was cleveloped  by this author for JPL navigation. ROTRAN generates the CM velocity
change resulting from an attitude maneuver using thrusters,

In this report, the velocity change resulting from turns about the spacecraft II axis will be studied.
First, a mode] called the hay angle  model will be derived which linearly relates the angle between “
initial and final CM velocities, OV, to the total turn angle magnitude, fl~~. Next, a model will be
derived that linearly relates the final CM velocity magnitude to the square of the spacecraft rigid
body radius of gyration. Finally, comparisons will be made between the above models and results
of ROTRAN simulations.

Since the half angle and radius of gyration models are linear, they can be wed to compute 0.
and the final velocity magnitude without the cost (albeit greater accuracy) of ROTRAN. A principal
goal of this study is to understand the validity and limitations of the above models and when the
full power of ROTRAN is needed.

2 General Motion Of The Center Of Mass

In this paper, n general mass is any object of nonzero mass, Fig.  (1) shows the case of a general mass
at some time t relative to a coordinate system [2] which is assumed to be an inertial frame (a frame
in which Newi,on’s  laws of motion are valid). Approximating the general mass as a collection of
infinitesimally small ~]oint  masses, each such point mass i will have some well defined position ii(t)
and some fixecl mass mi. Thus the total mass is M = ~ mi. This leads to the following definition
for a special point called the cenier of mass oj the general mass or more simply, the center  of mass
(also called the CM).

‘1’he motion of fie~  relative to [1] is called translational motion of the general mass. This motion is
also described by the vector ~C~ below, the velociip oj the center of mass.

V.m(q := @#J (2)



3 The Cassini  Spacecraft Model

A picture of the Caasini  spacecraft is shown in Fig. (2). ‘I%c spacecraft is rnodellcd  as a rigid body
subject only to, forc& generated by attitude control thrusters. l’hruster firings are controlled by the
Attitude and Ariicuktion  Control System  (AA C%’),  the operation of which is also modclled.  Each
thruster has a position and unit force direction fixed in [S’1 as shown in Fig. (3) (see also Fig. (2)).
‘1’lIc  force magnitude of the thrusters are in general difTerent but are taken to be identical for this
study. To a first apprc}ximation,  the thrusters are at the corners of a rectangle parallel to and above
the zy plane with sides parallel to the z and y axis. ‘I%is rectangle is also centered on the z axis.
I]owever, as will bc seen later, there are deviations from this alignment. Nevertheless, the above
approximations will do for the current discuwi(lrl,

The force magnitude of each thruster is assumed to have a zero rise and fall time and to have a
constant force magnitude when on. That is, the force magnitude versus time is a series of rectangular
pulsea. Therefore, the force due to thruster k when projected in [Sj is either 6 or some constant ~k.
Fig, (4) shows the thruster positions and forces in the ZZ plane when viewed from the +V axis. Note
t}lat  if thrusters 1 and 4 fire, then the spacecraft will undergo a righthanded (counterclockwise) turn
with respect to, the y axis. A lefthanded (clockwise) turn can be accomplished using thrusters 2 and
3. Note that this involves using the z facing thrusters to implement y axis turns. However, y turns
can also be implemented using z facing thrusters. Specifically, pair 7 and 8 and pair 5 and 6 can be
used for right and lefthanded turns respectively. ‘J’he use of x and z facing thrusters will be studied
in this report.

If the z facing thrusters are used, then they will generate a unit acceleration vector acn, = az
(Itq. (6)) of the center of mass in the spacecraft -z direction as shown in Fig, (4). If the z facing
t}lrusters  are used, then either unit acceleration vector a+= or ii-r will apply, depending on the turn
direction. a+= and &_r point in the +Z and -z direction of the spacecraft, respectively..

An extensive description of t}le AACS can bc found in references [1] and [2]. IIowever,  a brief
discussion is in order here. First, consider the case where the frames []] and [S.] of Fig. (1) have the
same origin as a third frame [SC] as shown irl Fig. (5). [SC] is called the command J-tame  for reasons
to be presented shortly. Note that [S.] defrn~ t}!e actual rotational state of the spacecraft since it
is always parallel to the spacecraft frame [8. For this rerwon, [Sa] will be called the actual  )rame.

In actual operation, the time history of the attitude of [SC] relative to [1] is given to the spacecraft.
In addition, the time history of the attitude rate of [Se] relative to [1] is also sent to the spacecraft.
I’he attitude rate is represented by the angular velocity vector JC and is called the corhmand  rate,
~’he combination of the command frame and command rate is called the command state.

The job of the AACS is to fire the attitude thrusters so that the frame [S.] and its angular
velocity relative to [O, da (also called the actual  rate),  remain within some specified dead band
relative to [SC] and tic. This is done by a closed loop three axis stabilized feedback system.
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4 DYNAA!ICS  OF A SINGLE AXIS 7’URN
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Figure 5: The command, actual and inertial frames

In this study, [Se] is commanded to maintain a common y axis with [1] as shown in Fig. (6).
Thus, the command frame and rate are completely defined by 0, and an angular velocity with a
y component only, reapcctively  (in Fig, (6), we is the command rate magnitude). As shown in the
figure, WC is set to increase linearly with time from O to w“, thru time to. ‘1’his time span is called
the occe/erwiion phase,  The magnitude remains constant for a time span te, the constant rofe phase.
Finally, the magnitude decreases from w“, back to O during the deacceleration  phase over a time span
td. ~efirling  fro = t.+ tc + td as the total turn time, the following relates the angle and angular rate
(where O ~ t < trO).

J
t

or(t) = wc(t)dt
o

(7)

(8)

Therefore, 0, exhibits a quadratic, linear and then quadratic behaviour for the three phases. 6,0 is
the final value of Or and is called  the turn angle.

During any phase of the turn, thruster firings will take place if the command and actual frames
are misaligned beyond the dead band. However, thruster activity is expected to be greatest during
the acceleration and deacceleration  phaaes and least during the constant rate phase.

4 Dynamics Of A Single Axis Turn
Figs. (7) thru (9) show the translational and rotational state of the spacecraft respectively during
the acceleration, conslant  rate and deacceleration  phases of a lefthanded (clockwise) turn about the
spacecraft y wcis (Fig. (4)). [J] and [Sl are rcx<pectively the inertial and spacecraft fixed frames of
Fig. (l). [S,] is the command frame of Figs. (5) and (6). The frame [Sa] of Fig. (1) is strictly
speaking a fourth frame. However, it is assumed that the AACS maintains an indistin~uishab]e
difference between [Sc] and [Sc]. Therefore, [S.] is not explicitly shown in this example. R.”,  is the
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center of mw’~ vector. to and td of Fig. (6) are taken to be equal. In this example, the z facing
thrusters of F’ig.(4)a  reused togenerate  y axis turns. lhm1’ig.(4 ),thisn~eansthat  the center of
mass unit acceleration vector is a~ and is always in the negative z direction of [~. The vector a~a
is parallel to it. However, it has its origin at the origin of [~. At t = O, it is asumed  that the CM
is stationary and that [S’1  is not rotating relative to [O.

Fig, (7) shows conditions at three succasive  times t = O, tl and tz during the acceleration phase.
Without loss of generality, the three frames [1], [Se] and [SJ are taken to be parallel at f = O. As
t increases to t 1, [SC] rotates as shown. Therefore, (~ is instructed to rotate in the same way.
In order for tlhis  to happen, thrusters 2 and 3 of Fig, (4) must fire. At t = O, this leads to the
accelerations &(0)  and &la(0). At f = tl, [$ will have rotated, hopefully so that [Sa] and [SC] are
indistinguishable. This means that, at t = fl, a,o(tl)  will also rotate as shown. This covers the
rotational change up to il. For the translational change, note that the CM will initially move in the
- z direction clf [~. However, the spacecraft and unit CM acceleration also rotate, Therefore, due
to 13q. (6), the CM will shift somewhat as shown. Note that the CM position at t = O is shown in
the subfigure  for conditions at t = t] for comparison.

Ati= t2, [S.] has rotated some more. [Sl is therefore instructed to keep up, and all vectors
change as sho’wn  in the figure. The subfigure for t = iz also shows the CM position at t = O for
comparison.

Fig. (8) shows conditions at three successive times t~, iq and f~ during the constant rate phase.
During this pha~, [SC] is rotating at a constant rate. Assuming that [Sl rotates at the same rate as
[S,l at the start of the phase, then the two frames will rotate together and no thruster firings will
bc needed. [S’1 will therefore maintain this constant rate c,f rotation and ~cn, will remain constant
due to Nq. (3). The CM will thus move in a straight line during this phase.
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Finally, Fi,g. (9) shows conditions at thtcc successive time-s tG, f 7 and ts during the deaccclcration
phase. During this phase, the rate of rotation of [SC) is slowing down. in order for [S’1 to do the
same, thrusters 1 and 4 of Fig. (4) must flte, yielding the unit acceleration & as shown. Recall that
the CM moves according to Eq. (6).

5 The Half Angle Formula

5.1 D e r i v a t i o n

The movement of azo in [1] will sufficiently describe the rotational motion in Figs. (7) thru (9) for
the purposes of this discussion. Under the above conditions, this vector will remain  in the zz plane
of [fl. Fig, (1 O) shows the variation of a:d ill this plane as a function of Or (which is measured
clockwise from the -z axis). da, Oe and Od are the angles between the start and stop valu~~ of 0,
respectively in the acceleration, constant rate and deacceleration  phases. Note that a~o (Or) is shown
specifically for a value of f?, in the deacceleration  phase.

From Figs. (6) and (10), Eq. (7) and the condition t. z= td irl %ction  (4), one gets the following.

By definition, the acceleration of Eq. (3) can be written as a magnitude A.n, times the unit vector
aza.

iicn,(t) =: Aem(t)iizd(t)

This can be combined with Eq. (3).

J
tficm(t) =: AC~(~)&(T)d?

o
‘l’he above can be converted as follows after

(lo)

(11)

c}langing  the independent variable from t to 0.

(12)

It was assumed in Section (4) that the spacecraft coasts during the constant rate phase with no
t}lruster  activity. ‘1’bus, A,~(O, ) is O for 00 s 0, S da + O.. A-ssuming that,  the thrusters are on
continuously during the acceleration and deacceleration  phasm and assuming conditions outlined in
Section (3), one gets from 13qs. (3) and (10) that A,nt is constant at A,n,O  in the acceleration and
deacceleration  phases. This yields the following result for ~e~ at the end of the turn when coupled
with 13q. (8) and Fig. (,10).

‘[J” / e‘“ $,(0 ~~ , __f.n, (~ro) =: A,m.
.1

‘0 &z(fq do
o We(e) 6.+8, %(0)

(13)

After an extensive amount of algebra, calculus  and geometry, the above can be modified into the
next equation with extensive use of the functional dependence of 0. and w. in Fig, (6).

(14)

It is now convenient to define the following for the sum in the above integrand.

A,(0)a,  (0) = a,.(0)  +- a,. (OrO  - 0) (15)
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A, (0) and A, ((9) are respectively the magnitude and unit direction of the vector sum on t}w RHS of
the above.

The next step is proof that & in F~. (15) is independent of 0. First, note Fig. (1 1). In this figure,
the z, y and z axis of [~ are positioned as ill Fig. (10). The two unit vectors az@(0) and a, O(O,O -0)
on the RHS of Eq. (15) are shown. It should be clear that aza (0) is rotated by O clockwise from the
- z axis. Similarly, iizd (Oro - 0) is rotated by O counterclockwise from the final  angle 6.0. The sum
of the two, and therefore ii,, will point halfway between aZO(0) and ato(OrO - 0) forming the angle
a as shown. h other words, a, points at all angle halfway across the rotation angle OrO, a rotation
constant independent of O in Itq. (15). This a!lows the following rewrite of Eq. (14).

(16)

= a, Vem (ero)

In other words, the final velocity is in a direction ha~way across the full rotation angle 0,0. From
Figs. (4), (7) and (1 1), note that the initial velocity VC,~(()) is in the -z direction of [z]. 0. is the
angle between the initial and final velocity. This leads to the following.

(17)

This is the form of t}le half angle formula for this case where z facing thrusters are used for y axis
turns. When the z facing thrusters are used instead for y axis turns, one gets the following formula
after a similar derivation (proof is left to the reader).

o“ = 90”. . !!! (18)
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This is. still called  a halj angk formula since it is linear and the proporticmality  constant has a
magnitude of 112.

5 . 2  S u m m a r y  O f  Assumptiorm

‘1’he  following are assumptions used in the derivation of Eq. (17). A key point in the awumptions  is
8gnin*etry.

1.

2.

3.

4.

5.

6.

7.

8:

Note

The Ca.wini  spacecraft is a rigid body.

Forces on the spacecraft are due tc) attitude control thrusters only.

Each thruster has a position and unit folce direction fixed in [SJ (Fig. (3)).

Each thruster has the same force magnitude with a zero rise and fall time. l’hereforc,  the force
profile versus time is a series of rectangular pulses.

7’he thrusters are symmetrically located at the corners of a rectangle parallel to and above the
zy plane of [Sl with sides parallel to the z and y axis. ‘I’he rectangle is centered on the z axis
(Fig. (3)).

The time of the acceleration and deaccekration  phaw are equal (f. = td in Fig. (6)).

Thrusters fire continuously throughout the acceleration and deacceleration  phase but not at
all during the constant rate phase.

The frames [SC] and [S.] (Figs. (1) and (b)) are identical.

that items (5) thru (8) heavily involve symmetry. These will be referred to in results covered
i n  S e c t i o n  ( 8 ) .

6 The Relationship Between A~C~ And The Radius Of Gy-
rat ion

}Ivv is the moment of inertia about the spacecraft y axis and M is the spacecraft mass [3]. ‘l’his
leads to the definition of the radius oj gyration about the spacecrajf  y axis, ro.

(19)

Using scalar fo~mulaa and several simplifying approximations, a simple relationship between

and r. can be derived. ‘l’he derivation begins with the following for the force on the spacecraft
(At = 2to since,,  by assumption, no forces act during the constant rate phase).

(21)
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Thetorqu  eon the spacecraft can beapproxirl~ated  t>ythcfollow’illg  (w’}lcre  risan effective tl]rustcr
~l~onlcntarm~indAw=wm,  inl’ig.  (6)).

All the above can bc combined to yiqld a simple expression for AV.

‘J’hc important point from the above is that A V.O is proportional to the square of the radius of
gyration for fixed Aw and r. Of course, the above uses a number of simplifications. Nevertheless,
the validity of the above will bc investigated using two cases where the ratio Aw/r is approximately
constant and where r~ is different.

7 Description Of Studied Cases
This study is divided into six cases. Parameters that are constant for all cases are listed in Table(1).
Given a specific case, a set of command states are selected. Each command state results in a different
turn angle. Given all the above, the command state is fully defined by Fig. (6) where ta = td.

Recall that Or. is the turn angle and is the area under the curve for w, in Fig. (6). For a given
case and for large turn angles, OrO is varied by varying fc from onc command state to the next,
maintaining td and Wm at a constant value, This will work for valuezi of f& greater than the area
under the WC curve corresponding to te = O. The value of 0,0 in this case is & = w~t~. Values
of 0,0 < O.c, are acheived  by first setting ic = O and using the sarnc slope for WC in the acceleration
and deacceleration  ptmscs as used when OrO > Ore. Define we as the value of WC at the end of the
acceleration phase. The different turn anglea for drO < OrC are acheived  by varying Wd and to within
the above slope constraint.

For a given case, Wm is undefined for 0,0< O,c. Nevertheless w~ is now defined as the peak rate
for those turns where 0,0 ~ f?,, (in this study, all cases have some 0,0 ~ O,c so this definition poses
no problem). Since this peak rate by construction is the same for all such drO, w~ by the above
definition is a case parameter. Note that W. =. L+] for f)rO ~ Ort and Wa < w“, otherwise. By the
same token, for a given case, the value of id is constant by construction for 6,0 ~ (lr C. ‘I’his value of
tO is another case parameter and is defined as fan,. Given all the above, the next step is to set tan,.
However, a quick review of rotational dynarnim is now in order.

The rotational state of a rigid body is completely defined by the Euler  equations [3]. In the
following, N is the total torque relative to the CM,  G is the angular velocity of a body fixed frame
relative to an inertial frame and E is tbc inertia tensor. All vectors and tensors are projected in a
body fixed frame [.S’l.

ri = (z x Ew.’i+ (24)

Neglecting the first term above and assuming a diagonal inertia tensor, we get (where i ~ (x, y, z)),

d Ni
Zwi = iz

(25)
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EE=SteOnt~iEiT:;ang~~:4B~13ang  d;-x~ rati~
Bang/13ang  tmne constant (x,y,z)

t
<————
ROTRAN sample time

— — . .
L r:4-UGXS- -5————— ..- ..— ——— - .:5

Thruster Parameters
All thrusters have a z coordinate of +3.0  meters

and a force magnitude of 0.6N——.———  . ..——————

::IZ3!E

X Y  Coo~~S[~(rneters)  Uxllt  F~-———
<——-— —--— — . .  .
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-2.——
-.?— - . — — — . .—
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=z———— — - - —  —  — .
-+Z——._.——— ———

-t-x———— ——

Table 1: Paramcte~s constant for all cases
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1“
_.. .— _.=_-

Valuc.—. .—— —
5222.2.—. _ _ .  — .
--0.03 -0.03 1.38-.-——
7625.0  8020.6 3394.8

~x, YY, zz, xY, xz, YZ) [-. I -:85.2 137.4 -61.2 I——

Table 2: Beginning Of Mission (BOM) mass properties

Of particular interest in the above equation is the case where i = y. For the ~ axis turns investigated
here, one set of thrusters is used in the acceleration phase, another during deacceleration.  NV. is
the magnitude of the y torque component generated by the acceleration phase thrusters while IVvd
is correspondingly for the deacceleration  phase. Note that ill~a  is not necessarily equal to Nvd.

‘1’his  study exclusively usM a bang/bang control law [2]. This means that a thruster may or
may not fire in a sample period. If it does fire, it is on only for some At beginning at the start
of the sample period and off for the rest. For a W3Y0  duty cycle, this At is half the sample period
(However, note in ‘I’able (1 ) that the fraction of the sample period during which thrusters are on is
65/125, a little over 1/2. ‘l’his is due to the fact that the thruster on time has to be a multiple of the
ROTRAN sample time.). Given a case and therefore an w~, the time needed for the acceleration
phase thrusters to incre~  the rate to w,. from O or for the deacceleration  thrusters to decrease the
rate to O from wm is (using Eq. (25), assuming a 50% duty cycle and where NY is respectively Nva
or Nvd)!

1 t50 = 2unaHw/Nti (26)---

tom is defined to be the larger of the two times above for the two thruster sets. Or equivalently, to~~
is set baaed on the smaller of NYC and Nvd. This way, the thruster set with the smaller torque value
will be able to keep up with the command rate in Fig. (6). Note that several assumptions are used
to derive the formula used to set fo~. However, these assumptions do not matter as long as the
chosen value leads to a command state that can be followed by the acceleration and deacceleration
thrusters.

In this study, the use of X and Z facing thrusters for y axis turns will be investigated, q’his
study will also use mass properties for expected beginnirig  of mission ( BOM ) and end of mission
(HIM) conditions (Tabl~  (2) and (3) [4]). Finally, two values ofwn, are used, 0.25deg/sec (normal
rate) and 0.75deg/sec  (sprint rate).

Each case is identified by three character strings. The first string is either X or Z for the
thruster set. The second string is either B(2M or EOIL# to identify the maw property. The last
string is either normal  or sprint  to identify the value of u~. .The csxs used for z facing thrusters are
(X, BOM, sprint), (X, BOM, normal) and (X, EOM, normal). The cases for z facing thrusters are
(Z, BOM, sprint), (Z, BC)M, normal) and (Z, EOM, normal). Tables (4) thru (9) con}ain parameters
for each case,

8 Simulation Results

Values of O“ and Ak’,o versus 0,0 for all cases are shown in Tables (10) thru (15). Corresponding
plots are shown in Figs. (12) thru (17).
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13%ikrameter --ruHG-T-- Valuc — 1rS&acecraft  mass
Center of mass TR=l?l’:”2 0 0 3-  1.;1

L@, YY, zz, xY, xz, Yz) I L -80.5 -34.6 66.6 j-..——. .—. ——— —

Table 3: End Of Mission. (130M)  mass propertim

—..

$Parameter T%Z–  - Value—- —..
Wm dcg/scc -0.75—- — .
NUn N - M 1.944

~

E
———

0,. (degs)
1 0 ”  —

-—
20”
3 0 ”  —

6 0 °  —

9 0 °  —

120” —

150” —

180° —

—

Table 4:

lnlman~_Statc  Parluneters—..—..————

[-

——-
t“ (sees) t, (SCCS) UC (deg/see)— — . .  —  _ _ _ _ _

37.95 ‘o -“lni6%’-”-——-— _ _ _ _
53.67 0 0.3726.—-— - .— ____
65.73 “ O 0.4564——.. — .—
92.96 0 0.6454~—-. — _ _ _
108.01 11.99 0.75——

noroi–-t  51 .99  - t 0.75

Parameters for case (X, BOM, sprint)
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Command State Paramctcrs
In all cases, id =tow, a n d  U. =L+,—.. — _—— —- —

la]

—..—— —.—- .
6,0 (degs) t, (SCCS)

— - .  —  .—— ——.
10° 4—-.—— ———-.
20° 44—.—-.  — ———-
30” 84— —  . - . .  ————
60° 204-—-.  — ———.
90° 324—-. — —---
120° 444-—-.  — ——..
150° 5 6 4—— -..
180° 637.. —. -—- .—— —. --—

Table 5: Parameters for case (X, BOM, normal)
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~:[g~a
Command State Parameters

In all cases,  ia = is”, a n d  Ua == w~,.. ——.. -—... —.— —.

FiPFi!a

Table 6:

k :---3
——. .—— .—— ——.

30° 101.32
60° 221.32——- -. ——— —.—
90° 341.32.—. .— ——..
120° 461.32—  -— ——. —
150° 5$1.32—-.  —
180° 70~$2—-.— ——

Parameters for case (X, EOM, normal)

ll!-
Parameter Units Value—-— —-—
w“, deg/sec 0.75
N — ‘—–-W_—_——— N - M  1 . 4 7 0
Nvd ~ 3.542— - .
t am ‘- seconds 142.84——. - —— —

Command State Parameters

Table 7: Parameters for case (Z, BOM, sprint)
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Command State Paranlcters
I n  all cases, t. = ia~ and WO =w~.———-—..  ———.——-——

H:
—-—

0,0 (Clcgs) t, (Ecs)—. .— —— —___
30° 72.4__.— — ——.
f30* 192.4.——. —— —.——.
90° 312.4—.-— —._L.
120° 432.4—— -.. ———-
150° 552.4—— -..
180° 67i14——- .—— ———.

‘i’able 8: Parameters for case (Z, 130M, normal)

l_iGiiherl-iiX-T--v-
—-.

Command State Parameters
In all cases, to = ion, and WO = Wn,-— —-. —-—. —

_——_. —
~ 1 8 0 °  ‘~8~8~—-—-.——  ——-—.

l’able  9: Parameters for case (Z, EOM, normal)
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[~lz

.  . . —  —.
0,0  (degs) & (dcgs) AVrO (111/SCC)—-.——

10 86.10 ‘4.209 * 10-

— .  —-—
20 _-}o.ol ‘~.318*  10-

30 75.06 —Z.463 * lo-——— — - —  —  .—-—
60 60.17 7.022 * 10-

. — — —  —-.—— .—
90 45.14 1.249 * 10-

120 ‘ - ” – —  —i.741 *  lo-30.16.—
150 15.19 ‘2.114 * 10-—— .——
180 0.18 ‘2.342 * 10-

- .

Table 10: Results of carse (X, IIOM, sprint)

E 13=

——— ___
0,0 (dcgs)  d. (degs)  AVrO (111/ScC). - —  —

10 84.07 —2.174* lo-. . . . —---—— ——-
20 79.99 1.136* lo-— - . .  —  ——

3 0 74.82 1.830 * 10-

60 ‘ - – —  ‘%845 *  1 0-59.99—-———  — - -
90 45.03 5.598 * 10-

120 -39.97 ‘6.959 * 10-—.—-
150 ‘“i4.98 7.858 * 10-— . . .  —
180 0.05 ‘iL207 * 10--—— — - . — —  ——-

‘1’able  11: Results of case (X, BOM, normal)

SIAf[Jl,ATION RF: S[JLTS

Plots of O“ versus 6,0 for cases (X, 130hi,  sprint) and (Z, BOM, sprint) are shown in Fig. (12).
The solid  lincw show the theoretical half angle models  for the z and z facing thrusters. Simulated
data points are represented by circles and are connected by dashed lines. Note that agreement is
very good. However, the slight deviation between siniulation  and theory for the z facing thrusters
can be explained. First, note from Table (7) that Nyo < “NY~. Thus, the acceleration thrusters
will have to fire during more sample periods than the dcaccelcration  thrusters in order to generate
the same Aw during time t.. ‘I’his means that the contribution to ~c~, is not the same for the
two pbascs.  This violates symmetry conditions listed in Items (5) thru (8) in Section (5.2). Using
Fig. (1 1), the reader should be” able to see that this results in a 0. less than the half angle model
for larger turn angles. By contrast, note from Tab]cs  (4) t}~ru (6) that NYO = Nvd for all three cases
using z facing thrusters. This leads to better agreement as can be seen in Figs. (12) thru (14).

Fig. (13) s’hews the same type of plot for cases (X, BOM, normal) and (Z, BOM, normal). The
deviaticm  between theory and simulation for z facing thrusters is for the same retwon  as in Fig. (12)
(Table (8)).

Finally, Fig. (14) shows results for casca  (X, EOM, normal) and (Z, EOM, normal). In this
case, the deviation for z facing thrusters leads to an increase of the simulated f?v relative to the
half angle mode].  This can bc explained by noting from Table (9) that NvO > Nyd. Therefore, the
dcacceleration thrusters must fire more often than the acceleration thrusters in order to generate
the same Aw during time id. It is left to the reader to scc that this assymetry  leads to the deviation

—
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‘l’able 12: Results of case (X, EOM, normal)

‘I’able 13: Results of case (Z, IIOM, sprint)

I=E3zEi0,0 (dcgs) 0. (degs) A V,. ( m / s e e )

FTT-FR93%%=I
Table 14: Results of cw (Z, BOM, normal)
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as shown.

8  SIhfUItA1’10N  lWSULTS

Table 15: Rxmrlts of case (Z, EOM, normal)

The velocity magnitude versus 6~0 is shown for all cascx in Figs. (15) thru (17). For z facing
thrusters, the general trend can be understood with the aid of Fig. (11). For small turn angles, the
acceleration andl deacceleration  phases vectorally  enhance ~em, to a first approximation. However,
AV,O is small  since the acceleration arrd deac.celeration  phases are not that long. For large turn
angles, there is significant cancellation due to symmetry, leaving only an z compcment  for a 180°
turn angle. This sugg~ts  that AVrO peaks somewhere between 0,0 = 0° and 180°. This is basically
what is se.cn in Figs. (15) thru (17). For z facing thrusters, it is left to the reader to see that the
acceleration and deacceleration  thrusters vectoral]y  cancel for small  turu angles, For larger turn
angles, the two phases generate a vectoral  enhrmcement. Also, the time of the acceleration and
dcacccletation  phases increases with the turn arrgle. This suggests that the velocity magnitude will
start out at O anld increase. Again this is basically what occurs in Figs. (15) thru (17).
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130M - Wm = 0.75dcg/sec

0.025

0 . 0 2

0.015

0.01

0.005

0

_p  -l.  .

II
I I
II
I I
!1
I I
II
II

111111 1.111
--t-?- ]--: -~-l  --t--t -t--l
II 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1111111111
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1
a H~+

60 90 12(J 1s0 IBo

Tumanglcmagnkudc  (clegs)

8  SlAfUI,A3’10h’  JtF:SVltl’S

. .

k’igure 15: AV,0vs6.0  forc~~(X, 130M, s~Jrint)  and(Z, I\OM, spril~t)
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Turn angle magnitude (dcgs)

Figure 17: AV,O vs 0,0 for cases (X, EOM, normal) and (Z, EOM, normal)
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This section is concluded with an investigation of F;q.  (23). Results arc shown in ‘.l’ablcs  ( 16) and
(17). TaMe (16) shows results when using z facing thrusters. ‘1’he column Iahelled  AV,o(f;olj)  is the
velocity magnitude resulting in the case (X, EOM, normal). The column Iabclled  AV~O(~JOAJ) is the

velocity magnitude rexulting  in the case (X, BOM, normal) for the same turn angle. From Tables (5)
and (6), all turn angles involve a nonzero value of i.. Therefore, the peak turn rate is the same for
all turn angles, ‘l”herefore, the Aw term of Eq. (23) cancels in the ratio in Table (16). The r term in
the equation is an effective moment arm. Note from ‘l’able (1) that thruster coordinates in [S~ are
constant for all cases. However, the CM position depends on which mass property is used, FIOhi
or EOM. However t note from Tables (2) and (3) that the CM offset has a dominant z component
w}]ich is approximately the same in both cases. Therefore, the r term in Eq, (23) is approximately
case independent and will cancel in the ratio in Table (16). This leaves the square of the radius
of gyration. This depends only on the mass property. As indicated in Table (16), the ratio of the
squares of the radii of gyration is approximately 1.52. This theoretically is the velocity ratio. ‘1’he
ratios in the table arc generated by simulation and average out to 1,35. This is considered to be
excellent agreement considering the approximations and scalar form of Eq. (23).

Table (17) shows tl}le  same results for the z facing thrusters. It is left to the reader to scc that
all approximations used in Table (16) apply here as well. Excluding the ratio for OrO = 180°, the
average of the simulated ratios is x 1.57 compared to the theoretical value of 1.52 tm.scd on 13q. (23).
Again, this is considered to be excellent agrccnlent.
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(%92-— . .._ —_....-

Avemge  of ~$~ = 1.35
——..——— —-—

‘l’able 16: Radius of gyration test using x facing thrusters

I
______

30. — — _
60.-. ——
90--.——
120. — .
150— —  _ _ _
180.———

(%%)’= 152-— . _______

——-
5.294 ● 10- -——
2.158* 10a—- —..——

——.—-

%-

AV,O(IIOMJ  (m/=) ~v~~~—-.—-
1 .049* lo- 1.54.— ____ .—— —
9.513* lo- 1.56—_—- ———
7.931 * lo- 1.56——
5.807 * 10- 1.55

1.57 ezckding  6,0 = )80°

Table 17: Radius of gyration test using z facing t}}rusters
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9 Conclusions
‘l’he half angle models of Eqs. (17) and (18) are excellent first order approximate ions under symmetric
conditions (Section (5.2)). However, asymmetries due to dificrences  in torque magnitudes of accelera-
tion and dcacceleration phase thrusters lead to noticeable and sometimes significant deviations from
the half angle formula. The proportionality of the final velcjcity magnitude to the radius of gyration
squared in Eq. (23) is also an excellent first order approximation. The above models enable the first
order determination of CM velocity characteristics without using the costly albeit greater power of
ROTRAN .

References
[1] Scngstacke,  Marc A,, ROTRAN, l’he JPL Navigation Cassini Spacecraft Simulator, National

Council of Black Engineers And Scientist, inc., Technet  1992, compendium of papers.

[2] Sengstacke,  Marc A., ROIRAN - Theory And hnplementaiion  In Softwaw,  Revision 1, Califor-
nia Institute of Technology, Jet Propulsion Laboratory, Engineering Memorandum # 314-554,
March 19913

[3] Hughes, Peter C., Spacecmjt  Attitude Dynamics, John Wiley& Sons, 1986

[4] Lee, Larry W., Cassini  Project, Project Mass Properties Report, Issuf  #1, Sept. 11, 1992,
PI) 699-0) 3, California Institute of Technology, Jet Propulsion Laboratory


